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Abstract

In the case of a differentiable manifold, where metric properties interact with the smooth
structure, Brownian motion is generated by the Laplace-Beltrami operator. On top of that,
the symmetries of a Lie group can potentially facilitate implementation via the associated
Lie algebra. These notes investigate the possibility of matching infinitesimal symmetries
of a general smooth structure via a Lie group, with a goal of achieving more tractable
implementations.

1 Introduction
The symmetries of a mathematical object form naturally the algebraic structure of a group. Sym-
metries often enable the development of efficient algorithms. For instance Gaussian elimination
relies on the symmetries of the Euclidean space to transform an initial system of linear algebraic
equations to a more simple one. Symmetry is leveraged in optimization when constrained prob-
lems recast into unconstrained ones over a certain group. Sensible functions between groups
serve as a means for exposing their interaction and facilitate understanding the one by studying
the other. More importantly, computational complexity does not necessarily remain unaltered
under such functions, thus suggesting that it might be easier to design in a certain group aiming
to apply in its image.

These notes focus on Lie groups. The latter are smooth manifolds equipped with a compatible
group structure. The group operations (multiplication and inversion) are smooth with the
corresponding isomorphisms rendering the tangent bundle of a Lie group trivial. Because of that,
the operation of rather complex constructions on general manifolds, can be naturally captured
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by more simple ones through the associated Lie algebra. We want understand the Brownian
motion on general Lie groups. In order to do so, we focus on deriving the corresponding invariant
Laplace-Beltrami operator. We do so, without any compactness assumption on the group.

2 Preliminaries
A smooth manifold M of dimension dim(M) = d is a Hausdorff space along with a local dif-
feomorphism onto Rd. The tangent space at a point is isomorphically defined by the space of
derivators and the set of all tangent spaces admits naturally the structure of a fiber bundle−the
tangent bundle. Then, one has a connection that indicates how changes in the total space induce
changes along the fiber. Whenever a certain connection is defined, one has a notion of curvature.
In what follows we review the derivation of the Laplace-Beltrami operator.

To begin with, on a smooth manifold M , consider a smooth, symmetric, covariant tensor
field g : C∞(TM)× C∞(TM)→ C∞(M), with

g(X,Y )(p) =
∑
i,j

gi,j(p) eip(Xp)⊗ ejp(Yp), p ∈ U (1)

where {ei}di=1 is the dual to the frame {Ei}di=1; the latter naturally defined by the isomorphism
φ−1

∗ : Tϕ(p)(M) → Tp(M), φ−1
∗ ( ∂

∂xi
|x=φ(p)) = Ei,p. Here (U,φ) denotes a smooth chart of

the (smooth) covering of M . Provided with a smooth section X : M → TM , with Xp =∑
j=1Xi,pEi(p) in U ⊆ M , let X∗ : M → T ∗M be the smooth co-vector field determined by X

and the Riemannian metric g:

X∗(p) ≡ g(X)(Y )(p) =
∑
j

X∗j
p e

j
p(Y ), (2)

where

X∗,j
p =

∑
i

gi,j(p)Xi,p, (3)

are the components of X∗ w.r.t. the co-frame1 {ei(·)}i. Conversely, given a smooth co-vector
field X∗ : M → T ∗M as in (2), (3) determines a smooth vector field X : M → TM that in U
can be expressed w.r.t. the frame {Ei} as above. Its components are

Xi,p =
∑
j

gi,j(p)X∗,j
p , (4)

where gi,j represents g−1 in U . We isomorphically define the gradient gradf : M → TM of a
0−differential form f ∈ C∞(M) to be the vector field such that

g(gradf, Y )(p) = df(Y )(p), ∀p ∈M, (5)

where df : Ω0 → Ω1 is the exterior derivative of the 0−form f

df(X) ≡ Xf, (6)
1The topology of the tangent bundle is given by the pre-image of the projection map. Thus, open sets of the

tangent bundle are of the form W = π−1(U) ≡ U × En. This implies that frames and co-frames are considered
always w.r.t. some open chart. Besides, they are both constant assignments only in some open U ⊆ M .
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where of course Xf(p) ≡ Xpf . Inside (U,φ),

df(Yp)(p) =
∑
i

ciei(Yp),

which for Yp = Ek,p gives ck = Ek,pf . This implies

gradf(p)i =
∑
j

gi,j(p)Ei,pf,

or

grad(f)(p) =
∑
i

(∑
j

gi,j(p)(Ej,pf)
)
Ei,p, p ∈ U.

Take h ∈ C∞(M). Then

gradfp(h) =
∑
i

(∑
j

gi,j ◦ φ−1(x) ∂

∂xj

∣∣∣
x=φ(p)

f̂
) ∂

∂xj

∣∣∣
x=φ(p)

ĥ.

which holds for all ĥ ∈ C∞(Rdim(M)=d), and thus for ĥ = xl too. As a result

gradfx =
∑
j

gi,j ◦ φ−1(x) ∂f̂
∂xj

∣∣∣
x
, x ∈ Ū = φ(U) ⊆ Rn,

Assuming that M is oriented, let ωg : M → Λn(T ∗M) be a non-negative differential form
with

ωg(X1, . . . , Xn)(p) = α(p) e1
p ∧ · · · ∧ enp (X1, . . . , Xn), p ∈ (U,φ) (7)

where α ∈ C∞(M), and {ei}i is the dual to the coordinate frame {Ei}i in (U,φ). In addition,
given the metric (1), let {Êi}i be the orthonormal frame w.r.t. to which we assign positive orien-
tation in (U,φ), and {êi}i the corresponding dual. With respect to this frame, the Riemannian
volume form reads

ωg(X1, . . . , Xn)(p) = ê1
p ∧ · · · ∧ ênp (X1, . . . , Xn), (8)

Since the orthonormal frame spans point-wise the corresponding tangent space, and since êip =
λ1e

1
p + λ2e

2
p + · · · + λne

n
p , we obtain êip (Ek,p) = λk., êip (Ek,1) = cik, and therefore êii =

∑
j c
i
je
j
p.

By equating (7), and (8) on the coordinate frame components, we obtain:

ω (E1,p, . . . ,En,p) = ê1
p ∧ · · · ∧ ênp (E1,p, . . . ,En,p)

= Alt
(
ê1
p (E1,p)⊗ · · · ⊗ ênp (En,p)

)
= 1
n!

∑
σ∈Sn

sgn(σ)ê1
p

(
Eσ(1),p

)
⊗ · · · ⊗ ênp

(
Eσ(n),p

)
.

Further,

êip

(
Eσ(i)p

)
= êip

(
φ−1

∗

(
∂xσ(i)

∣∣∣
x=φ(p)

))
=
(
φ∗−1êi1

) (
∂xσ(i)

∣∣∣
x=φ(p)

)
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=
(
φ∗−1∑

j

cije
j
p

)(
∂xσ(i)

∣∣∣
x=φ(p)

)
=
(∑

j

cijφ
∗−1ejp

)(
∂xσ(i)

∣∣∣
x=φ(p)

)

=
∑
j

cijdx
j
(
∂xσ(i)|x=φ(p)

)
= ciσ(i)(φ(p)) = ciσ(i)(x).

Therefore,

α(p) = ω (E1,p, . . . ,En,p) = 1
n!

∑
σ∈Sn

sgn(σ)c1
σ(1) · · · c

n
σ(n) = det

(
C⊤(φ(p))

)
.

On top of that, since {Êi,p}i are orthonormal w.r.t. the Riemannian metric g,

gi,k(p) = g
(
Ei,p,Ek,p

)
(p) = g

(∑
j

cji Êj,p,
∑
ρ̇

cρkÊρ,p
)

(p) =
∑
j,ρ

cji c
p
kδ
j
ρ =

[
CC⊤

]
i,k
.

As a result, α(p) =
√

det(g(p)). At this point we assume that given U ⊆ M , we can find an
oriented orthonormal frame {Ei}ni , with co-frame {ei}ni .

Lemma 1. On a smooth oriented Riemannian manifold M , the divergence of a smooth section
X : M → TM , inside a smooth chart (U,φ) is expressed as

div(X)(p) = 1√
det(g(p))

∑
i

Ei,p
(√

det(g(p))Xi(p)
)
, p ∈ U (9)

where {Ei}i is the natural frame in (U,φ).

Proof. By definition

div(X) ≡ ⋆−1d
(
X⌟ ωg

)
, (10)

where, ⋆ : Ωn(M) → C∞(M) is the hodge star operator, ⌟ : Ωn(M) → Ωn−1(M), the interior
product, and d : Ωn(M)→ Ωn+1(M) the exterior derivative.

In a smooth chart (U,φ) with associated coordinate frame {Ei}i, and corresponding dual
{ei}i, the interior product can be expressed explicitly. In particular, the interior product of X
and the ωg is a reduced order alternating tensor with value at p ∈ U

(X⌟ ωg)(p) = X⌟
(√

det(g(p))e1
p ∧ · · · ∧ enp

)
. (11)

All 0−tensors are alternating tensors, and, the wedge product of a 0−tensor and any alternating
tensor is well-defined. On top of that, the interior product of a 0− differential form is zero and
thus, by the product rule of interior product

(X⌟ ωg)(p) = (−1)0
√

det(g(p))
(
X⌟(e1

p ∧ · · · ∧ enp )
)
(p)

=
√

det(g(p))
n∑
i=1

(−1)i−1eip(X) ∧ . . . êip · · · ∧ enp

=
√

det(g(p))
n∑
i=1

(−1)i−1Xi(p)e1
p ∧ . . . êip · · · ∧ enp (12)
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By taking the exterior derivative of (12) and subsequently using the product rule for exterior
derivatives [Lee, 2012, p. 365] we obtain the n−differential form, with value at p ∈ U

d(X⌟ ωg)(p) = d
(∑

i

√
det(g(p))(−1)i−1Xi(p)e1

p ∧ . . . êip · · · ∧ enp
)

linearity & product rule of d=
∑
i

d
(√

det(g(p))(−1)i−1Xi(p)
)
∧ e1

p ∧ . . . êip · · · ∧ enp

+
∑
i

√
det(g(p))(−1)i−1Xi(p)d

(
e1
p ∧ . . . êip · · · ∧ enp

)
. (13)

The second term is zero. For the first term, the differential d
(√

det(g(p))(−1)i−1Xi(p)
)

is a
co-vector field with value at p

d
(√

det(g(p))(−1)i−1Xi(p)
)
(Y )(p) =

∑
l

βl(p)elp(Y ), p ∈ U, Y ∈ TpM (14)

For Yp = Eηp in (14) we obtain

βη(p) = d
(√

det(g(p))(−1)i−1Xi(p)
)
(Eηp)(p) (15)

On top of that the exterior derivative of a 0−form

df(Y )(p) ≡ Ypf. (16)

Therefore, from (14), and (15) we obtain

βη(p) = Eηp
√

det(g(p))(−1)i−1Xi(p). (17)

Thus, the exterior derivative reads:

d
(√

det(g(p))(−1)i−1Xi(p)
)
(Y )(p) =

∑
l

Elp
(√

det(g(p))(−1)i−1Xi(p)
)
elp

= (−1)i−1∑
l

Elp
(√

det(g(p))Xi(p)
)
elp. (18)

By plugging (18) into (13), we can easily observe that the only term that remains from the sum
in (18) is the ith term. Thus,

d(X⌟ ωg)(p) =
∑
i

(
(−1)i−1∑

l

Elp
(√

det(g(p))Xi(p)
)
elp

)
∧ e1

p ∧ . . . êip · · · ∧ enp

=
∑
i

Eip
(√

det(g(p))Xi(p)
)
eip(−1)i−1 ∧

(
e1
p ∧ . . . êip · · · ∧ enp

)
(19)

In the above expression, eip swaps i− 1 times to reach the i slot, and thus

d(X⌟ ωg)(p) =
∑
i

Eip
(√

det(g(p))Xi(p)
)
e1
p ∧ · · · ∧ enp
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=

∑
i Eip

(√
det(g(p))Xi(p)

)
√

det(g(p))
ωg(p)

As a result, the Riemannian divergence of the vector field X at a point p ∈ U can be expressed
by

divMX(p) =

∑
i Eip

(√
det(g(p))Xi(p)

)
√

det(g(p))
, p ∈ U.

Given an orientation in M , the Laplacian of a smooth function f ∈ C∞(M) is defined as:

∆f(p) ≡ div
(
(df)♯

)
,

where ( )♯ : T ∗M → TM denotes the dual pairing induced by the metric. To begin with, it is

((df)♯ ⌟ ωg)(p) = (gradf⌟ ωg)p ≡ gradfp⌟ ωgp,

and from the product rule for the interior product, and given that it is zero for a real-valued
function,

gradfp⌟ ωgp =
√

det(g)(p) gradfp⌟ (e1
p ∧ · · · ∧ enp )

=
√

det(g)(p)
n∑
i=1

(−1)i−1ei(gradfp)e1
p ∧ · · · ∧ êip ∧ · · · ∧ enp

=
n∑
i=1

[√
det(g)(p)(−1)i−1(∑

j

gi,j(p) (Ej,pf)
)]
e1
p ∧ · · · ∧ êip ∧ · · · ∧ enp

∈ Λn−1(T ∗M). (20)

The linearity and product rule of the exterior derivative gives for (20):

d(gradfp⌟ ωgp) =
n∑
i=1

d
[√

det(g)(p)(−1)i−1(∑
j

gi,j(p) (Ej,pf)
)]
∧ e1

p ∧ · · · ∧ êip ∧ · · · ∧ enp

+
n∑
i=1

(−1)0
√

det(g)(p)(−1)i−1(∑
j

gi,j(p) (Ej,pf)
)
d
(
e1
p ∧ · · · ∧ êip ∧ · · · ∧ enp

)
(21)

The second term in (21) is zero due to repeated indices. Further,

d
[√

det(g)(p)(−1)i−1(∑
j

gi,j(p) (Ej,pf)
)]

=
n∑
k=1

Ek,p
(√

det(g)(p)(−1)i−1(∑
j

gi,j(p) (Ej,pf)
))
ekp. (22)
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After plugging (22) into (21) the only non-zero component corresponds to the index i. Also,
for ek=i

p to go from the ‘zero position’ to the êip position, i ‘swaps’ are needed and thus, (22) is
multiplied by (−1)i. Therefore,

d(gradfp⌟ ωgp) = −
[

n∑
i=1

Ei,p
(√

det(g)(p)
(∑

j

gi,j(p) (Ej,pf)
))]

e1
p ∧ · · · ∧ enp

= − 1√
det(g)(p)

[
n∑
i=1

Ei,p
(√

det(g)(p)
(∑

j

gi,j(p) (Ej,pf)
))]

ωgp,

and subsequently,

⋆−1d(gradfp⌟ ωgp) = − 1√
det(g)(p)

[
n∑
i=1

Ei,p
(√

det(g)(p)
(∑

j

gi,j(p) (Ej,pf)
))]

As a result the Laplacian reads,

∆pf = − 1√
det(g)(p)

[
n∑
i=1

Ei,p
(√

det(g)(p)
(∑

j

gi,j(p) (Ej,pf)
))]

, p ∈ U. (23)

We can further expand (23) as follows:

∆pf = − 1√
det(g)

[
n∑
i=1

Ei
(√

det(g)
(∑

j

gi,j(x) (Ejf)
))]

= −
∑
i,j

Ei
(√

det(g)gi,j
)√

det(g)
Ejf −

∑
i,j

gi,jEiEjf (24)

the latter can be written as

∆pf =
∑
j

(∑
i

Eip
(√

det(g)gi,j
)√

det(g)

)
Ejpf +

∑
i,j

gi,jEipEjpf

= d(x)⊤∇f + g−1(x) : Hessf, (25)

where
[
d(x)

]
i

= div
(
g−1,i(xt)

)
, where the divergence takes the ith column of the matrix g−1. So

each component of d is the divergence of the ith column of the matrix g−1(p). In other words,
we may consider a vector field with components in U the entries of the ith column of g−1(p).
Then, the generator of the Riemannian Brownian motion w.r.t. the metric g reads:

∆pf = divMg−1(p)⊤∇pf + 1
2g

−1(p) : 2Hesspf, (26)

and from [Pavliotis, 2016, p. 66] we can identify the Riemannian Brownian motion as the
following SDE

dxt = divM
(
g−1(xt)

)
dt+

√
2g−1(xt)dωt, (27)

where the divergence is applied to every column of the inverse metric. Worth noticing that the
Riemannian Brownian motion, as opposed to the standard Brownian motion, incorporates a
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drift term. Intuitively, this term is indicated by the inhomogeneous local metric properties (i.e.
volume distortion) and reflects the ununiform spread.

We can do more by writing the term inside the first sum in (24) as

Ei
(√

det(g)gi,j
)√

det(g)
= Ei(

√
det(g))gi,j√
det(g)

+ Eigi,j (28)

At this point we can further express the first term in (28) by using the fact that the Riemannian
metric automatically determines uniquely a Riemannian torsion-free connection on M [Helgason,
1979]2. A connection is represented by the Christoffel symbols, which in this case, are determined
by the Riemannian metric.

Ekgij = Γikj + Γjki =
∑
l

gljΓlik + gliΓljk, (29)

Ekgij =
∑
l

−gljΓilk − gliΓ
j
lk, (30)

where (30) follows from differentiating the identity gijg
jk = δki and inserting (29). From the

expression of the derivative of the metric determinant we also find

Ekdet(g) =
∑
i,j

det(g)gijEkgij

=
∑
i,j

det(g)gij (Γikj + Γjki)

=
∑
i,j

det(g)(Γiik + Γjjk) = 2
∑
i

det(g)Γiik

From this we obtain ∑
i

Γiik = 1
2det(g)Ekdet(g) = 1√

det(g)
Ek

√
det(g).

Thus, (28) reads

Ei
(√

det(g)gi,j
)√

det(g)
=
∑
l

Γll,igi,j +
∑
l

−gl,jΓil,i −
∑
l

gl,iΓjl,i,

and subsequently the first term in (24)

∑
i,j

Ei
(√

det(g)gi,j
)√

det(g)
Ejf =

∑
i,j,l

(
Γll,igi,j − gl,jΓil,i − gl,iΓ

j
l,i

)
Ejf.

At this point we can use the symmetry of lower indexes of the Christofell symbols, isolate the
second term, and swap the indexes l, and i, to obtain

∑
i,j

Ei
(√

det(g)gi,j
)√

det(g)
Ejf = −

∑
i,j,l

gl,iΓjl,iEjf

2In general, a connetion indicates how motion in the total space, in that case in the tangent bundle, induces
motion along the fibre (tangent space)- it is a vector-valued 1−form.
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As a result, the Laplace-Beltrami operator reads:

∆pf =
∑
i,j,l

gl,i(p)Γjl,i(p)Ejf(p)−
∑
i,j

gi,j(p)EiEjf(p), p ∈ U ⊆M. (31)

Again, we can identify the Riemannian Brownian motion as

dxt =
[∑
i,l

gl,i(xt)Γjl,i(xt)
]
j=1:n

dt+
√

2g−1(xt)dωt, (32)

where explicitely, the drift term depends on the Riemannian connection. Both stochastic differ-
ential equations (27), and (32) are understood in the Ito sense.

3 In Lie groups
Under valid collections of open sets we are in a position to model continuous symmetries of
topological groups. The line, the circle, the invariances of the Euclidean space are all standard
examples of topological groups. Topological groups are central objects in areas like harmonic
analysis, representation theory, and differential geometry. A very important set of topological
groups are Lie groups. Lie groups are smooth manifolds that are also groups with the group
operations being smooth.

For any g ∈ G, the left shift by g is the map Lg : G→ G defined by Lg(h) ≡ gh. In addition,
the right shift (by g) is the map Rg : G→ G defined by Rg(h) = hg. Both left and right shifts
are diffeomorphisms. For g, h ∈ G, the composition of left shifts Lg and Lh is: Lg ◦ Lh = Lgh,
which implies L−1

g = Lg−1 . The tangent map of Lg at h ∈ G is Lg∗ : ThG → TghG, and it is
composed as Lg∗ ◦ Lh∗ = Lgh∗ which implies L−1

g∗ = Lg−1∗.

df(Yg)(g) = df(Lg∗ ◦ L−1
g∗ Yg)(g)

= (L∗
gdf)(L−1

g∗ Yg)(e). (33)

Consider a symmetric, positive definite covariant 2−tensor on TeG, τ : TeG × TeG → R, and
define the Riemannian metric ḡ : C∞(TG)× C∞(TG)→ C∞(G) such that

ḡ(Xg, Yg)(g) ≡ τ(L−1
g∗ Xg, L

−1
g∗ Yg), g ∈ G,Xg, Yg ∈ TgG. (34)

It is easy to show that ḡ is a left-invariant Riemannian metric on G. With respect to that metric,
the gradient of a function f ∈ C∞(G) satisfies

ḡ(gradfg, Yg)(g) = df(Yg)(g), ∀g ∈ G.

Thus, by combining (33), and (34)

τ(L−1
g∗ gradfg, L−1

g∗ Yg) = (L∗
gdf)(L−1

g∗ Yg)(e), ∀Yg ∈ TgG

The latter expression shows that the tangent vector L−1
g∗ gradfg ∈ TeG uniquely determines a

covector ω(Ye) ≡ τ(L−1
g∗ gradf(g), Ye) ∈ T ∗

eG. So there is a vector space isomorphism Q : TeG→
T ∗
eG such that (

Q ◦ L−1
g∗ gradfg

)
(Ye)(e) = (L∗

gdf)(Ye)(e)

for all Ye ∈ TeG. Point-wise definition of equality of co-vectors yields:

Q ◦ L−1
g∗ gradfg = L∗

gdf,

or

gradfg = Lg∗ ◦Q−1 ◦ L∗
g df.
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3.1 The Left-invariant Laplacian

The result in (31) relies on the smooth structure of M , and it can be transferred unaltered into
the Lie group setting by plugging-in the algebraic structure provided by the group. In [Liao,
2004], the line of argumentation uses [Helgason, 1979, page 105, Theorem 1.7] and essentially
zeroes down a term related to the connection on the group. Instead, our derivation follows
similar and perhaps more refined arguments and refers to [Tuynman, 1995] were no assumptions
regarding the affine connection are made; and with two exponential maps being involved.

Lemma 2. The left-invariant Riemannian Brownian motion on G reads

dgt = Lgt∗
(
− 1

2
∑
i,j

γjijϵidt+
∑
i

ϵi(←↩)dωti
)
, (35)

Before giving the proof to Lemma 2, its necessary to state the following

Definition 1. On a smooth manifold M , consider the differential operator D : C∞(M) →
C∞(M). The operator D is called invariant under the diffeomorphism ψ : M →M iff Dψ(p)f =
Dpf ◦ ψ.

Proof. The main goal is to express the coordinate frame induced by the smooth chart (U,φ)
w.r.t. the left-invariant vector-fields made by a basis in the tangent space at the identity of the
group, and in such a way extend the Laplacian to the entire manifold. In other words, we want
to perform a transformation at every tangent space TgG at g ∈ U .

To do so, first take U in (31) to be an open set that contains the identity of the group,
and subsequently choose a basis {ϵi}ni=1 on TeG. The exponential map exp : TeG → G is
a diffeomorphism from an open neighborhood of TeG around zero to an open neighborhood
V ⊆ U [Helgason, 1979, p.104, Proposition 1.6], and therefore, with g = exp(xiϵi), we can define
φ(g) = (x1(g), . . . , xn(g)) such that xi(e) = 0, and xi(g) = xi ∈ R and close to zero.

Let now {Ei}i be the coordinate frame inside this small neighborhood V , i.e. Eixk = δik, or
equivalently Eig = φ−1

∗
(
∂i
∣∣
x=φ(g)

)
. Note that {Eie}i = {ϵi}i. Consider (31) w.r.t. this frame

∆gf =
∑
i,j,l

gl,i(g)Γjl,i(g)Ejgf −
∑
i,j

gi,j(g)EigEjgf, g ∈ V. (36)

At this point, take the group homomorphism of the line (with shift symmetry) γ : t 7→ G, which
we know it reads γ = exp(tX), X ∈ TeG, and let it act on G from the right

θγ(t) ≡ Rγ(t)(g). (37)

The infinitesimal generator X̄ : G→ TG ≡ G× TeG of θ : γ ×G→ G is a left-invariant vector
field and by definition (it is the velocity vector of the orbit of g ∈ G under the action θγ), its
value at g ∈ G is given by

X̄gf ≡ dtf(Rexp(tX)(g))
∣∣
t=0, (38)

for all f ∈ C∞(V ⊆ G). Further, X̄g is a tangent vector at TgG, and thus, it can be written
w.r.t. the coordinate frame-basis as

X̄g =
∑
j

αj(g)Ejg. (39)
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Now, we know that every tangent vector at the identity completely determines a left-invariant
vector field through the tangent map of the left-shift Lg : G → G. Essentially, this is because
through the additional algebraic structure we can map diffeomorphically any neighborhood of
the identity to every neighborhood that contains a point of the group. By applying this to the
basis {ϵi}i ∈ TeG, we have:

ϵ̄ig =
∑
j

αij(g)Ejg. (40)

Essentially, we want to find the inverse of the transformation {αij(g)}dim(G)
ij=1 . The first step

to do so is to plug-in (40) into (38), and subsequently to view g ∈ V as the member of the
one-parameter sub-group g = exp(tY ), Y ∈ TeG, for t = 1, thus obtaining∑

j

αij(exp(Y ))Ejexp(Y)f = dtf
(
exp(Y )exp(tϵi)

)∣∣
t=0. (41)

Now, we use the formula for the product of the exponential map [Helgason, 1979, page 106]

exp(Y )exp(tX) = exp
(
Y + tϵi + t

2ad(Y )(ϵi) + O(t2)
)
,

which after plugging it into (41) yields:∑
j

αij(exp(Y ))Ejexp(Y)f = dtf
(
exp

(
Y + tϵi + t

2ad(Y )(ϵi) + O(t2)
))∣∣

t=0. (42)

The term inside the exponential map in the right-hand side of (42) is an element v ∈ (TeG, [ , ]) ≡
g. Observe now that since the exponential map is a diffeomorphism, f = xk in would give us
the kth component of v. That is,

αik(exp(Y )) = dtxk(Y + tϵi + t

2ad(Y )(ϵi) + O(t2))
∣∣
t=0,

or

αik(g) = dt
(
Yk + t(ϵi)k + t

2ad(Y )(ϵi)k + O(t2)
)∣∣
t=0

or

αik(g) = (ϵi)k + 1
2ad(Y )(ϵi)k, g ∈ V. (43)

Note that the dependency on g in the right hand-side of (43) ‘is hidden’ in Y and arises again
from the fact that exp is a diffeomorphism. With Y =

∑
i yiϵi ∈ g, and close to zero,

exp(Y ) = g,

with φ(g) = {yi}i. Therefore, Y =
∑
i yi(g)ϵi, and

αik(g) = (ϵi)k + 1
2ad

(∑
η

yη(g)ϵη
)

(ϵi)k. (44)

Due to linearity of the bracket

αik(g) = (ϵi)k + 1
2
∑
η

yη(g)ad(ϵη)(ϵi)k, g ∈ V,
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where the terms ad(ϵη)(ϵi) ∈ g can be expresses w.r.t. the basis {ϵi}i and the structure coef-
ficients of the group. The tangent map of the left-shift of the ith basis vector of the tangent
space at the identity at g ∈ V reads

ϵ̄ig =
∑
k

(
(ϵi)k + 1

2
∑
η

xη(g)ad(ϵη)(ϵi)k
)
Ekg,

where xη are the coordinates of g ∈ V . To find the inverse transformation, we start by the fact
that the tangent map of the exponential map exp(X)∗ : TeG→ Texp(X)G reads [Tuynman, 1995]

exp(X)∗ = Lexp(X)∗ ◦
( +∞∑
k=0

(−1)k

(k + 1)!
(
ad(X)

)k)
,

where (
ad(X)

)k+1(Y ) =
[
X,
(
ad(X)

)k(Y )
]
, ad(X)(Y ) = [X,Y ]. (45)

The map
+∞∑
k=0

(−1)k

(k + 1)!
(
ad(X)

)k = L−1
exp(X)∗ ◦ exp(X)∗ : g→ g

is invertible with( +∞∑
k=0

(−1)k

(k + 1)!
(
ad(X)

)k)−1
= idg + 1

2 ad(X) +
∞∑
k=2

βk ad(X)k,

where the third term vanishes for X close to zero. As a result

Eig =
∑
k

(
(ϵi)k −

1
2
∑
η

xη(g)
[
ad(ϵη)(ϵi)

]
k

)
ϵ̄kg, (46)

or, since {ϵi} are basis vectors,

Eig = ϵ̄ig −
1
2
∑
k,η

xη(g)γkη,iϵ̄kg, (47)

where the constants γkη,i ≡
[
ad(ϵη)(ϵi)

]
k

are the structural coefficients of G. Thus,

EjgEkgf =
(
ϵ̄jg −

1
2
∑
ξ,η

xη(g)γξη,iϵ̄ξg
)(
ϵ̄kgf −

1
2
∑
ρ,λ

xλ(g)γρλ,k ϵ̄ρgf
)

= ϵ̄jg ϵ̄kgf −
1
2 ϵ̄jg

(∑
ρ,λ

xλ(g)γρλ,k ϵ̄ρgf
)
− 1

2
∑
ξ,η

xη(g)γkη,iϵ̄ξg(ϵ̄kgf)

+ 1
4
(∑
ξ,η

xη(g)γkη,iϵ̄ξg
)(∑

ρ,λ

xλ(g)γρλ,k ϵ̄ρgf
)
. (48)

Let us now consider a symmetric, positive definite covariant 2−tensor on the tangent space at
the identity, τ : TeG× TeG→ R, and we impose an extra condition to the basis {ϵi}i. That is,
we assume that it is orthonormal w.r.t. τ , the latter being defined as

τ(X,Y ) ≡
∑
i,j

qi,jei(X)⊗ ej(Y ), ∀X,Y ∈ TeG, (49)
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where {ei}i ∈ T ∗
eG is the dual basis to {ϵi} In that case orthonormal means τ(ϵie, ϵke) =∑

j,ρ qijqpkδjρ = [QQ⊤]ik, where Q : TeG → T ∗
eG is the vector space isomorphism induced by

the tensor (inner product). By choosing Q = I, τ(ϵie, ϵke) = δik.
Subsequently, by utilizing τ , we can impose an extra condition on the Riemannian metric,

that is, to be left-invariant. On top of that left-invariant Riemannian metrics ḡ : C∞(TG) ×
C∞(TG) → C∞(G), are uniquely determined via the symmetric, positive definite covariant
2−tensor on the tangent space at the identity, according to the prescription

ḡ(Xg, Yg)(g) ≡ τ(L−1
g∗ Xg, L

−1
g∗ Yg), g ∈ G,Xg, Yg ∈ TgG. (50)

From (47), (50) we can express the metric components w.r.t. the left-invariant vector field as

ḡij(g) = ḡij (Eig,Ejg) (g)

= ḡ

ϵ̄ig − 1
2
∑
k,η

xη(g)γkηiϵ̄kg , ϵ̄jg −
1
2
∑
k,η

xη(g)γkηj , ϵ̄kg


= δij −

1
2
∑
η

xη(g)
(∑

k

γkηiδkj

)
− 1

2
∑
η

xη(g)
(∑

k

γkηjδki

)

+ 1
4
∑
k,σ,l,η

xη(g)γkηixσ(g)γlσj
δkl

= δij −
1
2
∑
η

xη(g)γjηi −
1
2
∑
η

xη(g)γiηj + 1
4
∑
k,η,σ

xη(g)xσ(g)γkη,iγkσl (51)

In addition, the connection coefficients in (36) read:

Γjl,i(g) = 1
2
∑
s

ḡjs(g)
(
Eig ḡsl − Esg ḡli + Elg ḡis

)
, (52)

where
Eig ḡsl = −1

2γ
l
is −

1
2γ

s
il +O (x)

Esg ḡli = −1
2γ

i
sl −

1
2γ

l
si +O (x)

Elg ḡis = −1
2γ

s
li −

1
2γ

i
ls +O (x)

(53)

Unfortunately (36) needs the coefficients of the inverse Riemannian metric, and obtaining
them from the elements of the metric is nothing but apparent. To this end, we are going to
apply Definition 1 to the Laplacian, which alternatively, can be defined as:

∆pf ≡
∑
i

d2

dt2 f
(
expp (tYi)

) ∣∣∣
t=0

, (54)

where {Yi} ∈ TpM is any orthonormal basis of TpM , and exp : TpM → U ∋ p is the Riemannian
exponential map. According to (54), the Laplace operator measures the local curvature of the
real-valued map f : M → R at the point p ∈M w.r.t. M . It does so by evaluating the function
f along geodesics that initiate from the point p ∈ M and extend along Yi. By definition, the
Laplacian is invariant under coordinate changes between orthonormal bases. Based on the above
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characterization, it is easy to see that the Laplacian comutes with local isometries [Gallier, 2013,
Proposition 16.2]:

∆φ(p)f =
∑
i

d2

dt2 f(expφ(p)(tφ∗Yi))
∣∣
t=0

=
∑
i

d2

dt2 f(φ ◦ expp(tYi))
∣∣
t=0

= ∆p(f ◦ φ), (55)

On top of that, it is easy to show that for a Riemannian Lie group, with a left-invariang
Riemannian metric, φ = Lg is an isometry, and

∆gf = ∆e(f ◦ Lg).

That is, to derive the expression for the left-invariant Laplacian at a point g ∈ G, all we need is
its value at the identity of the group. For g = e in (48), (51), and (53) we obtain

EjeEkef = ϵ̄jeϵ̄kef + 0,

ḡi,j(e) = δij ,

Γjl1i(e) = 1
2
∑
s

δjs

(
−1

2γ
l
is −

1
2γ

s
ie + 1

2γ
i
si + 1

2γ
l
si −

1
2γ

s
li −

1
2γ

i
ls

)
= 1

2

(
−1

2γ
l
ij −

1
2γ

j
il + 1

2γ
i
jl + 1

2γ
l
ji −

1
2γ

j
li −

1
2γ

i
li

)
= 1

2
(
γlji + γijl

)
,

respectively. Therefore,

∆e = −
∑
i

ϵ̄ieϵ̄ie +
∑
i,j

γjij ϵ̄ie.

As a result, due to left-invariance, the left-invariant Laplacian on G reads:

∆g = −
∑
i

ϵ̄ig ϵ̄ig +
∑
i,j

[ad(ϵi)(ϵj)]j ϵ̄ig. (56)

Note that (36) corresponds to the Riemannian Brownian motion on G which is given in local
coordinates by either (27), or (32). On the contrary, (56) corresponds to the left-invariant
Riemannian Brownian motion on G

dgt = Lgt∗
(
− 1

2
∑
i,j

γjijϵidt+
∑
i

ϵi(←↩)dωti
)
, (57)

where ϵi(←↩)dωti denotes the injection of the individual one-dimensional standard Brownian
motion dωti, into the corresponding basis vector ϵi of g.

Note that (35) is based on the differentiable, Riemannian, and algebraic structure of the
manifold, while (32) only on the differentiable and Riemannian structure.
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3.2 The special orthogonal group

The set
M =

{
X ∈ Rn×n : det(X) ̸= 0

}
is open as the complement of the closed set

{
X ∈ Rn×n : det(X) = 0

}
. On top of that,

continuity of det induces the standard topology from R to M . To see that we just deploy the
standard continuity argument: Take A ∈ M and the open interval I ≡ |det(A)| < ϵ, ϵ > 0.
Then define U ≡ det−1({|det(A)| < ϵ}) (which is open). Due to continuity of det, there exists
δ>0 s.t. the image of ||X − A||2 < δ is in I: Every invertible matrix is closely sourrounded by
invertible matrices.

Together with the open set M , and the empty set, the collection of the previously constructed
open sets form a valid topology T , and thus a valid topological space (M,T ). On top of that,
the pair (M, ·), with the second entry referring to the standard matrix multiplication, is a group
since for X1, X2 ∈ M , det(X1 · X2) = det(X1)det(X2) ̸= 0 (the identity matrix serves as the
identity of the group, and every element has a well-defined inverse).

Clearly, the map LX̄ : M → M defined as LX̄ ≡ X̄ · X is smooth, and the inverse is also
smooth since it can be written as X−1 = 1

det(X)adj(X). Thus, (M,T, ·) is a topological group.
In fact, it is the Lie group called the general linear group, denoted as GL(R, n)

Moving forward, the set F =
{
R ∈ Rn×n : R⊤R = I, det(R) = +1

}
is a subset of M , and

the pair (F, ·) is a group (again · refers to the standard matrix multiplication). Therefore, the
object (F, T, ·) is a (sub) Lie group (of GL(R, n)) called the special orthogonal group, denoted as
SO(R, n).

The tangent space TeG of every Lie group G at the identity e ∈ G is a vector space and
it can always be equipped with an additional binary operator ⋆ so that the triple

(
TeG,+, ·, ⋆

)
is a Lie algebra. Clearly the tangent space at the identity of GL(R, n) is Rn×n, and thus
dim(GL(R, n)) = n2. To find the tangent space of the special orthogonal group, consider a
smooth group homomorphism γ : (R,+) → SO(R, n). We know that the isomorphism γ∗ :
T0R→ TISO(R, n), and therefore, ω ≡ γ̇(0) ∈ TISO(R, n). Clearly, γ(t)γ(t)⊤ = I for all t ∈ R,
and thus

γ̇(0)γ(0)⊤ + γ(0)γ̇(0)⊤ = 0,

or

ω + ω⊤ = 0.

That is, TISO(R, n) =
{
ω ∈ Rn×n : ω + ω⊤ = 0

}
, and as a result dim(SO(R, n)) = n(n−1)

2 .
Surprisingly, dim(SO(R, 3)) = 3. It can be shown that (TISO(R, n),+, ·, [ , ]) is the Lie algebra
denoted by so(R, n) , where [ , ] : TISO(R, n) × TISO(R, n) → TISO(R, n). In particular, for
n = 3, the commutator is the known cross product between vectors (a lot of intuition can be
gained from here).

More importantly, the tangent space at the identity, inherits the inner product from Rn×n .

τ(Xe, Ye) ≡ tr(XeY
⊤
e ),

where e = I. Left-invariant Riemannian metrics are in 1-1 correspondence with the inner
products in the Lie algebra. Define

ḡ(XR, YR)(R) ≡ τ(R⊤XR,R⊤YR).
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Then the gradient gradRf : SO(R, n)→ TSO(R, n) w.r.t. that left-invariant metric is such that

ḡ(gradRf, YR)(R) = df(YR)(R).

In the following example, we compute the gradient of a real-valued map defined on the special
orthogonal group

Example 1 (Brockett [1989]). Consider the real-valued map f : SO(R, n) → R, defined as
f(x) = tr

(
x⊤AxN

)
, where A is symmetric, and N diagonal. It is

df(YR) ≡ YRf

= YI(f ◦ LR)

= d
dt

[
f(R · x)

∣∣∣
x=Θ(t,I)

]∣∣∣
t=0

= d
dt

[
f(R · I · γ(t))

]∣∣∣
t=0

= d
dtf(R · γ(t))

∣∣∣
t=0

= d
dtf(R · exp(tYI))

∣∣∣
t=0

,

where exp(·) = e(·), and

d
dtf(R · exp(tYe))

∣∣∣
t=0

= tr
(
− YIR⊤ARN

)
+ tr

(
YINR⊤AR

)
= tr

(
YI(R⊤A⊤RN⊤ −NR⊤AR)

)
= tr

(
R⊤YR(R⊤A⊤RN⊤ −NR⊤AR)

)
= tr

(
YR[R(R⊤A⊤RN⊤ −NR⊤AR)]⊤

)
= tr

(
R⊤YR[R⊤R(R⊤A⊤RN⊤ −NR⊤AR)]⊤

)
= τ(R⊤R(R⊤ARN −NR⊤AR),R⊤YR).

Due to uniqueness of the gradient

gradRf = R
(
R⊤ARN −NR⊤AR

)
.

Further,
ω⊤

∗ =
(
R⊤ARN −NR⊤AR

)⊤ = −
(
R⊤ARN −NR⊤AR

)
= −ω∗

The gradient flow reads

Ṙ = −R
(
R⊤ARN −NR⊤AR

)
, (58)

and it is the left-translated version of ω∗ ∈ so(3). As we already mentioned, for each t ∈ R,
−ω∗(t) ∈ so(3), and thus the unique one-parameter sub-group γ(τ) ≡ e−τω∗(t), τ ∈ R, such that
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γ̇(0) = −ω∗(t). Thus, for τ = t + h, we obtain γ(t + h) = e−(t+h)ω∗(t) = γ(t)e−hω∗(t), and the
corresponding to (58) gradient descent reads:

γ(t+ h) = γ(t)e−hω∗(t),

or

R(t+ h) = R(t)e−hω∗(t),

where ω∗(t) = R⊤(t)AR(t)N −NR⊤(t)AR(t).

4 Conclusion
In a differentiable manifold, Brownian motion is generated by the Laplace-Beltrami operator.
In addition, the algebraic structure of the group provides extra isomorphisms that facilitate
implementation via the associated Lie algebra. These notes represent an initial step towards
examining the matching of infinitesimal symmetries of a general smooth structure through a Lie
group, aiming for a more manageable implementations.
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